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ABSTRACT

The n-gram language model, which has its roots in statistical natural
language processing, has been shown to successfully capture the
repetitive and predictable regularities (“naturalness”) of source code,
and help with tasks such as code suggestion, porting, and designing
assistive coding devices. However, we show in this paper that this
natural-language-based model fails to exploit a special property of
source code: localness. We find that human-written programs are
localized: they have useful local regularities that can be captured
and exploited. We introduce a novel cache language model that
consists of both an n-gram and an added “cache" component to
exploit localness. We show empirically that the additional cache
component greatly improves the n-gram approach by capturing
the localness of software, as measured by both cross-entropy and
suggestion accuracy. Our model’s suggestion accuracy is actually
comparable to a state-of-the-art, semantically augmented language
model; but it is simpler and easier to implement. Our cache language
model requires nothing beyond lexicalization, and thus is applicable
to all programming languages.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement

General Terms

Algorithms, Documentation, Experimentation, Measurement

Keywords
Localness, Cache Language Model, Code Suggestion

1. INTRODUCTION

The spectacular advances in natural language (N£) processing in
recent years, in terms of speech recognition, translation, efc., have in
great measure been due to the ability of language models to capture
the repetition and regularity in commonplace speech and writing.
Language models assign a probability to a word sequence using an
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estimated probability distribution. High-quality language models
lie at the heart of most NL applications, such as speech recog-
nition [22], machine translation [7], spelling correction [24] and
handwriting recognition [46]. The most successful class of language
models are n-gram models, introduced three decades ago [6].

Recently, Hindle et al. [18]—building on the uniqueness property
of source code reported by Gabel and Su [16]—have shown that
software corpora, like VL corpora, are highly repetitive and thus
predictable using language models. Good quality language models
show great promise in software engineering applications. Hindle
et al. show that n-gram language models perform quite well, and
leverage this fact for code suggestion. In addition, Nguyen et al. [35]
have adapted the n-gram models for cross-language porting, and
Allamanis et al. [3] have applied them to the automatic recognition
and checking of coding styles. In this paper, we follow this work, to
further improve language models.

We begin our work by remarking on a special property of soft-
ware: in addition to being even more repetitive and predictable than
NL, source code is also very localized. Due to module specializa-
tion and focus, code tends to take special repetitive forms in local
contexts. The n-gram approach, rooted as it is in VL, focuses on
capturing the global regularities over the whole corpus, and neglects
local regularities, thus ignoring the localness of software. The local-
ness of source code refers to the skewed distribution of repetitive
n-gram patterns in the locality, namely the endemism and specificity
of n-gram patterns in the locality. Endemic n-grams occur only in
one locality (such as a single file). For example, new programming
units (files, modules) usually introduce new identifiers (variable
names, method names, and such), along with endemic n-gram pat-
terns of identifier use (e.g. myinvitees.next ()). Specificity is a
less degenerate version of endemism, signifying the tendency of
some non-endemic n-grams to favor a specific locality, while not
being endemic to it. For instance, different programmers have id-
iosyncratic n-gram frequencies (e.g. some programmers favor “for
( int i" while others prefer “for ( int size"), resulting in
the frequency-biased n-gram patterns in the specific files that each
programmer is involved in.

Since n-gram models can only provide suggestions occurring in
the training data, n-gram patterns specific or endemic to the locality
can be overlooked. For example, let us predict the next token after
a sequence “for ( int". Suppose the token “i" followed these
three tokens 30% of the time in the training data, while the token
“size" followed them 5% of the time. The n-gram model will assign
“i" a probability of 0.3 and “size" a probability of 0.05, and thus
“i" is chosen. For an isolated line, this would be the reasonable
choice to make. But now suppose that several previous lines in the
same file contained the n-gram “for ( int size", while none

contained “for ( int i". Arguably, the token “size" should



then be assigned a much higher probability. A token used in the
immediate past is much more likely to be used again soon than its
overall probability that n-gram models would predict.

The key insight underlying our work concerns this critical limita-
tion of traditional n-gram models. Our central hypothesis is:

Source code is locally repetitive, viz. it has useful local reg-
ularities that can be captured in a locally estimated cache and
leveraged for software engineering tasks.

We believe that this “localness” of software has it roots in the
imperative to create modular designs, where modules secrete lo-
calized knowledge [37]. To leverage this property, we deploy an
additional cache component to capture the localized regularities of
both endemic and specific n-gram patterns in the locality. However,
we need to overcome several challenges:

e How to combine the global (n-gram) model with the local
(cache) model? How to automatically pick the interpolation
weights for different n-grams?

e What is the locality to use? For example, how much local
data do we need? Which length of n-grams should we use?

e Does the additional cache component impose high computa-
tional resource cost?

In Section 4, we solve these problems by introducing a mechanism
that does not compromise the robust simplicity of n-gram models.

Our empirical evaluation on projects from five programming
languages demonstrates that a cache language model consisting of
both n-gram and cache components yields relative improvements of
16%~45% in suggestion accuracy over the state-of-the-art n-gram
approach [18]. Surprisingly, using just the cache component built on
5K tokens, by itself, outperforms the n-gram model trained on nearly
2M tokens in suggestion accuracy. It is worth emphasizing that the
cache model is quite simple and only requires lexicalization; no
parsing, type checking, etc. are required. Because of its simplicity
and unique focus on localness, it is complementary to most state-of-
the-art research on statistical modeling of source code.

Contributions. Our key contributions are:

1. We demonstrate (Section 3) empirically over large software
corpora, that source code is localized in the sense that code
regularities (n-gram patterns) are endemic, specific, and prox-
imally repetitive in the locality .

. We introduce (Section 4) a novel cache language model to
capture the localness of software that is simple (requiring
no additional information other than the tokens) and easy-to-
use (automatic selection of dynamic interpolation weights for
n-gram and cache components).

. We show (Section 5) that the cache model indeed captures the
localness of source code and the strength of the cache model
can be exploited for code suggestion, which substantially
improves the state-of-the-art n-gram approach [18].

We provide (Section 5.2.1) an option for code suggestion
when there is not enough corpus to train a language model:
using only the cache component built on thousands of tokens,
which achieves comparable suggestion accuracy with the n-
gram model trained on millions of tokens.
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2. BACKGROUND

2.1 Statistical Language Models

Language models are statistical models that assign a probability
to every sequence of words, which reflects the probability that this
sequence is written by a human. Considering a code sequence
S = tity ... tn, it estimates the probability as

N

P(S) = P(t1) - [[ Ptilta, ... ticr)

=2

(€]

That is, the probability of a code sequence is a product of a series of
conditional probabilities. Each probability P(¢;|t1,...,t;—1) de-
notes the chance that the token ¢; follows the previous words, the pre-
fix,h =t1,...,t;—1. However, the probabilities P(t;|t1,...,ti—1)
are in practice impossible to estimate, since there are astronomically
large numbers of possible prefixes. For a vocabulary of size 20,000
and sentences with maximal length of 10, there are approximately
10*3 different probabilities to be estimated, which is impractical.
Therefore, we need a method of grouping prefixes into a more
reasonable number of equivalence classes. One possible approach to
group them is by making a Markov assumption that the conditional
probability of a token is dependent only on the 7 — 1 most recent
tokens. The n-gram model is such a model that places all prefixes
that have the same n — 1 tokens in the same equivalence class:
P(t;|h) = P(tilt1, ..., ti—1) = P(ti|ticnt1,-. -

Jtic1) Q)

The latter is estimated from the training corpus as the ratio of the

times that the token ¢; follows the prefix sequence ¢;—pn+1, ..., ti—1:
count(t;—n Lyeooy t¢71, t;

P(t;|h) = (it ) ?3)
count(ti—n+1, .-, tiz1)

Thus, if the fragment “for ( int” occurs 1000 times, and “for
( int i” occurs 300 times, then p(i | for int () = 0.3.

2.2 Code Suggestion

The code suggestion task refers to recommending the next token
based on the current context. There has been recent work on code
suggestion. For instance, one thread of research [10, 20, 25, 39]
concerns on the suggestion of method calls and class names. Nguyen
et al. [34] and Zhong et al. [50,51] aim to predict API calls, and
Zhang et al. [48] focus on completing the parameter list of API calls.
Eclipse (and other development environments like IntelliJ IDEA)
makes heavy use of compile-time type information to predict which
tokens may apply in the current context.

N-gram models have been successfully applied to code sugges-
tion [18]. Hindle er al. [18] exploit a trigram model built from
the lexed training corpus. At every point in the code, the model
gives a list of possible tokens along with their probabilities that are
estimated from the training corpus. The probabilities can be used to
rank the candidate tokens. Then, the top-k rank-ordered suggestions
are presented to the user. The advantages of the n-gram approach
are the possibility to suggest all types of tokens (not just method
calls), permitting the model to incorporate valuable information
(indicating what most often does apply) that is not described by the
IDE-based approaches (guess what may apply). The n-gram model
is also very simple, and unlike more recent work [36], does not
require anything beyond tokenizing the code. On the other hand,
n-gram models will not help much when dealing with tokens and
n-grams locally specific to a particular context, and not present in
the code used to train the n-gram model.



Table 1: Java and Python projects data and English corpora.
Distinct tokens constitute the vocabulary. Thus Ant has a total
of 919,148 tokens, composed of 27,008 distinct tokens.

Tokens
Java Project Version Lines Total  Distinct
Ant 20110123 254,457 919,148 27,008
Batik 20110118 367,293 1,384,554 30,298
Cassandra 20110122 135,992 697,498 13,002
Log4l 20101119 68,528 247,001 8,056
Lucene 20100319 429,957 2,130,349 32,676
Maven2 20101118 61,622 263,831 7,637
Maven3 20110122 114,527 462,397 10,839
Xalan-J 20091212 349,837 1,085,022 39,383
Xerces 20110111 257,572 992,623 19,542

Tokens
Python Project  Version Lines Total Distinct
Boto 20110714 53,969 393,900 10,164
Bup 20110115 17,287 179,645 5,843
Django-cms 20110824 37,740 567,733 7,526
Django 20120215 205,862 2,137,399 55,486
Gateone 20111013 24,051 230,048 8,212
Play 20111202 231,177 1,893,611 68,928
Reddit 20100721 52,091 527,815 14,216
Sick-beard 20110408 99,586 1,005,823 53,345
Tornado 20120130 16,326 622,715 5,893

Tokens
English Corpus  Version Lines Total Distinct
Brown 20101101 81,851 1,161,192 56,057
Gutenberg 20101101 55,578 2,621,613 51,156

Table 2: Percentage of the endemic n-grams (only found in a
single file). “Freq." denotes the frequency of the n-grams in the
file. The denominator is the number of n-grams in the corpus.

Lang. Freq. 1l-gram 3-gram 6-gram  10-gram
>1 4.65% 25.63% 53.98%  70.22%

Java =2 371% 11.13% 16.17% 14.34%
>1 858% 41.82% 73.65%  83.79%

Python  >2 529% 14.44% 17.52% 12.47%
>1 328% 72.52% 99.70% 100.00%

English  >2 1.39%  3.44%  0.65% 0.20%

3. LOCALNESS OF SOURCE CODE

Is source code localized? To answer this question, we analyzed
both natural language and code corpora. We found evidence sup-
porting three aspects relating to our hypothesis: the endemism,
specificity and repetitiveness of code regularities in the locality.

Data. We collected the same data set of Java projects and English
corpora used by Hindle et al. [18]. The data set contains nine Java
projects with a total of more than 2M LOCs. To investigate whether
the commonality holds across different programming languages,
we also carried out experiments on another very different language,
Python. Table 1 shows the summary statistics on our data.

3.1 Are N-grams Endemic to Localities?

In this experiment, we investigated whether some n-grams are
only found in a local context (endemic to a locality). Table 2 shows
the percentage of the total n-grams in the corpus that were only
found in a single file." For example, suppose there are 1M 3-grams
extracted from one corpus, 200K of which are only found in a single
file, then the percentage is 20%. We can see that 25.63% of 3-

'In English corpus, each file is an article or a chapter of a book.
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Figure 1: Entropies of the file distributions for non-endemic n-
grams (grouped by the number of files) for Java. “Uniform"
denotes that the n-grams are distributed uniformly in the files.

grams from the Java corpus (41.82% from the Python corpus) are
found only in one file. The large proportion of n-grams only seen in
a local context denotes that source code is endemic to file localities.
Among the endemic n-grams in source code, there are over 10%
of the total 3-grams that occur more than one time in a single file; and
as the order (i.e. n) of the n-grams increases, a greater proportion
repeat in single files. These endemic, but locally repeating n-grams
represent an opportunity to improve upon language models that do
not take locality into account. In contrast, the percentage of the
endemic, but locally repeating n-grams in English is much lower
than Java and Python, especially for long n-grams (e.g. 0.20% for
10-grams). This validates our hypothesis that the localness is a
special feature of source code, which cannot be found in NLZ.

3.2 Is Source Code Locally Specific?

In this experiment, we investigated whether some non-endemic
n-grams favor a specific locality (locally specific). For each non-
endemic n-gram that occurs in multiple files, there would be a
discrete probability distribution p for the set of files F'. Here we use
locality entropy H r to measure the skewness of the distribution of
locality of an n-gram sequence o

He(o)= =3 . p(fo)logzp(fs) @

where .
count(n-gram o in f)

count(n-gram o in project)

p(fo) = ®)

Generally speaking, as | F' | increases, H increases. However,
the more skewed the distribution, the lower the entropy (and the
greater the opportunity for language models to exploit localization).
One extreme case is the endemic n-grams that occur in only one
file, then the entropy will be the lowest, viz., 0. Another example is
that n-grams are distributed uniformly in k files, then the entropy
will be the highest, viz., log, (k). The lower the entropy, the more
the n-gram o tends to favor a smaller subset of files in F'.

We place all non-endemic n-grams that occur in the same number
of files in the same group, and report their mean entropy, as plotted
in Figure 1. We can see that n-grams with varying orders share
the same trend: the entropies of their file distributions are lower
than that of a uniform distribution, indicating that the non-endemic
n-grams indeed favor a specific locality. For example, the locality
entropy of the 3-grams that occur in 326 files is 5.9, which is 2.5
bits lower than that of uniform distribution, viz, 8.4. The skewed file
distribution of non-endemic n-grams reconfirms our hypothesis that
n-gram models can benefit from capturing the locality.

3.3 Is Source Code Proximally Repetitive?

The degree of proximity of repeated n-grams to each other is
relevant to the design of locality-sensitive language models: exactly
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what range of proximity should language models consider when
estimating a local distribution? We employ n-gram distance to
measure how far separated the repetitive n-grams in the project are.
Distance for a specific n-gram is defined as the average span (in
term of the number of tokens) between the proximate occurrences
of this n-gram. ? For example, if “for ( int size" occurs 50
times in the project and there are 49,000 tokens between the first and
last positions where it occurs, we say the distance of “for ( int
size" is 1000 tokens. In other words, we may expect the n-gram to
appear again on average 1000 tokens after the last location where it
is previously found.

We plot in Figure 2 the variation of n-gram distance (log10)
with different n-gram order n. Generally, the n-gram distance
goes up with the increase of the order n. As seen, the n-gram dis-
tance of 10-grams for Java is 1754 (10>-2%) and for Python is 1514
(103-8), suggesting that programming languages are locally repeti-
tive. The highly proximate repetitive property of the n-grams sug-
gests that locally-sensitive language models have modest memory
requirements—we do not have to track too much local information.

Source code is localized in the sense that code regularities
in the locality are endemic, specific, and proximally repetitive.

4. CACHE LANGUAGE MODEL
4.1 Illustration

Our primary goal is to address a critical limitation of the standard
traditional n-gram models: their inability to capture local regu-
larities. We accomplish this by using a locally estimated cache
component to capture the endemic and specific n-gram patterns.

Capturing the structure of the surrounding locality, in an evolving
model that changes with the locality, is a good approach to capture
the local regularities. First, if we memorize the endemic n-grams
in the locality, we can offer the correct suggestion when they occur
again, which can never be provided by the n-gram model estimated
from the training data. This would be a good supplement to the
global n-gram models, which do not perform well, e.g., with n-
grams that are endemic and perhaps not seen before.

Second, a language model that captures short-term shifts in n-
gram frequencies might perform significantly better than the pure
n-gram models described above. If we memorize the n-grams
found in the locality, or cache, we can update the probability of the
n-grams based on their frequency in the cache. Let us revisit the last
example. From the n-gram model, we have p(i|for int () = 0.3
and p(size | for int () = 0.05. Suppose on the existing lines
in the file, “for int ( size" occurs 3 times and “for int (

21f the n-gram is found in different files, we skip the other files that
the n-gram does not occur in when we calculate the distance.
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i" never appears. Then from the cache we have p(i | for int
() =0and p(size| for int () = 1.0. If we use the average of
the probabilities from the two components as the final probabilities,
we will assign “1i" a probability of 0.15 and “size" a probability of
0.525, and thus “size" is chosen.

Our cache language model is based on these intuitions; it includes
both a standard n-gram and an added “cache" component. Given a
source file, the cache will contain all the n-grams found in the local
code. Thus, the combined model assigns each token candidate two
probabilities, the first based on its frequency in the training corpus
(the n-gram component) and its frequency in the cache (the cache
component). Linear interpolation of the two probabilities produces
an overall probability of each token candidate.

The main idea behind our work is to combine a large global
(static) language model with a small local (dynamic) model esti-
mated from the proximate local context. The n-gram and cache
components capture different regularities: the n-gram component
captures the corpus linguistic structure, and offers a good estimate
of the mean probability of a specific linguistic event in the cor-
pus; around this mean, the local probability fluctuates, as token
patterns change in different localities. The cache component models
these local changes, and provides variance around the corpus mean
for different local contexts. The strengths of the additional cache
component are reflecting the code locality by capturing:

1. Endemic n-gram patterns: The cache component captures
more different n-grams by memorizing the endemic n-grams
in the locality, which do not occur within the n-gram set
captured from the rest of the corpus. When the endemic
n-grams repeat, the cache component can offer a suggestion.

. Specific n-gram patterns: If a token that followed the same
prefix sequence has occurred often in the locality (might span
several local files), it will be assigned a higher probability
than when its local frequency is low. In this way, the inclusion
of a cache component satisfies our goal to dynamically track
the frequency-biased patterns of n-gram use in the locality.

In Section 4.2, we describe how the cache model automatically
learns to interpolate between these two models. Then, we analyze
several local factors that affect the cache model’s performance in
Section 4.3. By setting the factors appropriately, the cache com-
ponent will capture the code locality with modest computational
resources (as shown in Table 6).

4.2 Mathematical Treatment

The cache model is now introduced mathematically:
P(ti|h, cache) = X - Ppgram(ti|h) + (1 — X) » Peache (ti|R) (6)

Here t; is the token to be predicted, h is the prefix tokens that ¢; fol-
lows, cache is the list of n-grams that are stored in the cache, and A
is the interpolation weight. The combined model leaves the n-gram
component Py, gram(¢;|h) of the language model unchanged. Note
that the traditional n-grams model is the special case of the cache
model, when A = 1. The n-gram-based probability Py, gram (¢i|R)
can be regarded as a good estimate of the mean around which
the value P.aer(t:]h) fluctuates, while the cache-based probability
P.ache(ti|h) is the variance around that mean. This allows the es-
timate of Praehe(t:|h) to deviate from its average value to reflect
temporary high or low values.

Probability Estimation in Cache. The cache-based probability is
calculated from the frequency of ¢; followed the prefix A in the



cache. We estimate the cache probability P.ache(t:|h) by

count(< h,t; > in cache)
count(h in cache)

]Dcarhe (tz ‘h) = (7)
Here we map the prefix h to the m — 1 most recent tokens. It is
worth noting that the order m is not necessarily the same with the
order n for the n-gram component, as discussed in Section 4.3.

Automatic Selection of Dynamic Interpolation Weights. In sim-
ple linear interpolation, the weight X is just a single number that
may be set by hand. But we can define a more general and powerful
model where the weights are a function of the prefix. We assume
that the cache in which more records for the prefix are found is
considered more reliable. For example, if more prefix sequences are
found in the cache, we want to bias ourselves more towards using
the cache. To accomplish that, inspired by Knight [26], we replace
A(h) with 1, where H is the number of times that the prefix /
has been observed in the cache, and  is a concentration parameter
between 0 and infinity:

H
v+ H

_r
v+ H

P(t;|h, cache) = - Ppogram (ti|h) + Proce(ti|h)

(3)
We can see that if the prefix occurs few times (H is small), then
the n-gram model probability will be preferred. But if the prefix
occurs many times (H is large), then the cache component will be
preferred. This setting avoids tricky hand-tuned parameters and
make the interpolation weight self-adaptive for different n-grams.

4.3 Tuning the Cache

In this section, we will discuss several factors of the locality
that would affect the performance of cache language model: cache
context, cache scope, cache size, and cache order.

Cache Context. Cache context, by definition, is the lexical context
from which n-grams in the cache are extracted. The cache is initially
designed to capture the local regularities from the preceding tokens
in the current file, (the “prolog”, in contrast with the succeeding
tokens, or “epilog"), and is well suited for the initial development
(developing new files). However, for software development the
maintenance and evolution are critical activities [2], where both pro-
log and epilog contexts are available. We believe our cache model
will benefit from more context, which means that our model would
be more useful for software maintenance, as shown in Section 5.2.3.

We hypothesized that the performance of the cache component
would depend on the prolog more than the epilog. Recall that given
an n-gram, the probability from the cache component along with the
weight depends on its frequency in the cache and the total number
of n-grams that share the same prefix (i.e. H) (Eq. 8). Hence, we
expected different performance for the cache component built on
the prolog and epilog, since there maybe different distributions of
the n-grams that share the same prefix in the early and later parts of
files. This turned out to be false. This aspect of results are discussed
in Section 5.4.1.

Cache Scope. Cache scope is the part of codebase used to estimate
the cache component. The intuitive way is to build the cache on the
scope of the current file (file cache). However, one problem with the
file cache is that those initial sentences in a file may not benefit from
the file cache. We use a simple heuristic to alleviate the problem:
we build the cache on the previous K tokens which could span files
in local grouping (i.e. same subdirectory in the codebase).® In other
words, the underlying assumption is that software is also localized

3The files in the same directory are ordered by the filename.
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in the codebase, in the sense that the files in the same subdirectory
are locally similar. In this way, our cache model incorporates a
latent scope to capture the code patterns in local files.

Cache Size. Cache size is defined as the maximum number of n-
grams stored in the cache. Intuitively, it is more likely to observe
a given n-gram if we use a larger cache. However, there has to be
a trade-off between locality and coverage when we decide the size
of cache. The smaller the cache is, the more local regularities the
cache component can capture, at the cost of missing more possibly
useful n-grams. In contrast, a larger cache would cover more n-
grams while neglecting the localness of source code. An extreme
case is to build the cache on the whole project, which captures only
the global regularities. Moreover, maintaining a larger cache is
computationally expensive. As a consequence, we need to decide
an appropriate cache size to balance the locality and coverage of the
cache model.

Cache Order. Cache order refers to the maximum order m of n-
grams stored in the cache. Generally, the longer the prefix, the more
accurate the suggestion. A longer prefix is more specific since it has
more detailed information. For example, the long prefix “for (int
i=0; i<10; 1i" is more likely to predict the correct suggestion

“++" than the short prefix “; 1i". Given that a cache stores much

fewer tokens than the n-gram component, we can employ a higher
order m without increasing much complexity. Data sparseness
problems arise when we use higher order n-grams in the cache. We
employ back-off techniques [23] when a long prefix is not matched.

5. EXPERIMENTS

In this section, we try to answer the following research questions:
R1. Can the cache model capture the code locality?
R2. Can the strength be leveraged for code suggestion?
R3. Why does the cache model help?
R4. What factors affect the performance of the cache model?

In Section 5.1, we demonstrate, using standard cross-entropy over
large software corpora, that the cache model is indeed capturing the
localness of source code, for that the additional cache component
estimated from the code locality decreases nearly one bit over the
n-gram model. (Note that entropy is log scaled; intuitively, it means
the cache model renders code nearly twice as predictable.)

In Section 5.2, we evaluate our cache language model for code
suggestion, and show that the cache language model greatly im-
proves suggestion accuracy for different programming languages,
thus retaining the portability and simplicity of the n-gram approach.
Furthermore, our cache model is especially useful for cross-project
code suggestion and software maintenance.

In Section 5.3, we point out that identifiers benefit most from the
cache model and contribute most to the accuracy improvement. In
addition, the improvements are due to that the cache component
captures the endemic and specific n-gram patterns in the locality.

In Section 5.4, we analyze four factors (described in Section 4.3)
that will influence the cache model. Our analyses show that (1) there
is no difference between prolog and epilog, while combining them
achieves a further improvement; (2) the localness of software is also
reflected at the localized structure of codebase; (3) the suggestion
accuracy increases rapidly with cache size and order, saturating
around 2K tokens and 6, respectively.

Setting. We performed the 10-fold cross-validation (in term of
files) on each project in Table 1. We tested the statistical significance
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Figure 3: Cross-entropies of Java (below) and English (above).
We use the same orders for both n-gram and cache models. The
trend for Python is similar to Java.

using sign-test [14]. For the cache model, we set concentration
parameter v = 1, the cache size K = 5000 and the cache order
m = 10.* Our baseline is the lexical trigram model (i.e. n = 3 for
the n-gram model), which is the same with the n-gram component
in our cache language model.

5.1 Can the Code Locality be Captured?

We first studied whether the localness of software can be captured
by the cache model. We use cross-entropy to measure how good a
language model captures the regularities in a specific corpus. Given
acorpus S = t;...tn, of length N, with a probability par(S)
estimated by a language model M. The cross-entropy is calculated
as:

N
H(8) = = logapar($) = = 3 logs Pt 9
A good model is expected to predict with high confidence the test
data drawn from the same population, thus has a low entropy.

Figure 3 shows the averaged cross-entropies of all projects for
both Java and English. The two lines above are the averaged cross-
entropies for English corpora, while the lines below are for Java
projects. For English corpora, the cache model only outperforms
the n-gram model at unigram, while not for higher order n-grams.
This is because English is very flexible and n-grams (n > 1) are
hardly found in a very local cache (5K words). For Java projects,
however, the cache language model outperforms n-gram model
consistently, showing that the frequency of the n-gram in the recent
past, captured by the cache component, is a good indicator to the
probability estimation for programming language. This reconfirms
our hypothesis that programming language is quite localized and
the localness can be captured by the cache model.

5.2 Cache Model for Code Suggestion

We now show that the cache model can be applied to code sug-
gestion, although this is by no means the only application. As
mentioned earlier, good language models will be useful for other
applications: code porting [35], coding standards checking [3], cor-
recting syntax errors [12]

We emulate code suggestion in two scenarios: coding in new files
where only prolog is available (Section 5.2.1 and 5.2.2), and modi-
fying the existing files where both prolog and epilog are available
(Section 5.2.3).

Metric. We use the mean reciprocal rank (MRR) [41] measure,
which is a standard measure of the accuracy of techniques that
provide ranked lists of candidate answers. For each token in the

“We will discuss the influence of the cache size and order in
Section5.4, and y in the future work.
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Table 3: Accuracy with various settings on Lucene. Here “File
cache'" denotes the cache built on the previous tokens in the
test file, while “Extended cache' denotes the cache built on the
previous 5K tokens. Although SLAMC has a slight higher ac-
curacy, our model is language independent while theirs is not.

Model MRR Topl Top5
1. N-gram 51.88% 42.64% 63.97%
2. File cache 4330% 41.65% 45.36%
3. Extended cache 54.44% 52.04% 57.45%
4. N-gram + 2 65.57% 58.30% 75.01%
5. N-gram + 3 68.13% 61.45% 76.72%
[ Cache LM]
N-gram model [36] N/A 53.60% 66.10%
SLAMC [36] N/A 64.00% 78.20%

test data, the models produce a list of suggestion candidates ordered
by the probability. The reciprocal rank of a suggestion list is the
multiplicative inverse of the rank rank; of the real token t;.> MRR
averages the reciprocal ranks for all the tokens 7" in the test data:

|7

1
T 2

MRR is better at differentiating between the top few ranks, than
the top-n accuracy measure (how often the correct suggestion in
the top n suggestions). Mean reciprocal MRR=0.5 means that one
may expect the correct suggestion to appear on average at about the
second suggestion, and 0.33 indicates correct answer in the top 3.

1

MRR =
rank;

10)

5.2.1 Impact of Components

In this experiment, we evaluated the impact of different com-
ponents on code suggestion accuracy. Table 3 shows accuracy of
different configurations on Lucene, our largest Java project. The
first row is the lexical n-gram model [18]. The second and third
rows show the accuracies of using only the cache and extended
cache components, which are built on the file and previous 5000
tokens respectively. The fourth and fifth rows are the combinations
of the n-gram and cache components.

Surprisingly, using only cache component built on the previous
5K tokens (“Extended cache") outperforms the n-gram model built
on about 2M tokens (“N-gram"). The improvement is mainly due to
the increase of top1 accuracy (+9.4%), indicating that local context
is quite specific and accurate.® Using only cache component built
on the current file produces worse performance, confirming our
hypothesis that the localness of software also reflects at the localized
scope of the codebase (Section 4.3). Combining both n-gram and
cache components achieves the best performance. The absolute
improvements are 16.25%, 18.81%, and 12.75% for MRR, top1 and
top5 accuracies, respectively. This suggests that n-gram and cache
components capture different regularities in the source code.

We also list the accuracies reported in Nguyen et al. [36]. We
do not claim that those results are directly comparable to ours, be-
cause of potential subtle differences in tokenization, cross-validation
setting, suggestion tool implementations etc, but we present them
here for reference. Even though we have a lower baseline, our
cache model achieves comparable performance with the semantic
language model [36]. Unlike the Nguyen et al. model, our cache
model is quite simple, language-independent and requires no extra
information besides the tokens; so the results are quite encouraging.

5If the t; is not in the suggestion list, the reciprocal rank is 0.

®An increase of +3.2% is still found for top 1 accuracy when we set
the same order (i.e. 3) for both n-gram and cache components.



Table 4: Accuracy (MRR) of code suggestion. “Improv.'" denotes the absolute improvement of cache language model (‘‘Cache LM"")
over the n-gram model (“/V-gram"). “Sig." denotes the statistical significance tests against “/N-gram'' using sign-fest.

Java Proj. N-gram Cache LM Improv.  Sig. Python Proj. N-gram Cache LM Improv.  Sig.
Ant 53.78% 65.07% 11.29% <.001 || Boto 45.76% 59.50% 13.74% < .001
Batik 50.56% 68.34% 17.78% < .001 || Bup 39.43% 50.07% 10.64% < .001
Cassandra  53.06% 66.73% 13.67% <.001 || Django-cms  63.70% 74.34% 10.64% < .001
Log4j 51.74% 66.47% 14.73% < .001 || Django 44.06% 61.24% 17.18% < .001
Lucene 51.88% 68.13% 16.25% < .001 || Gateone 38.94% 56.58% 17.64% < .001
Maven2 53.96% 68.74% 14.78% <.001 || Play 42.41% 56.28% 13.87% < .001
Maven3 56.79% 68.99% 1220% < .001 || Reddit 40.08% 50.53% 1045% < .001
Xalan 50.86% 65.44% 14.58% <.001 || Sick-beard 37.89% 50.40% 12.51% <.001
Xerces 52.61% 70.38% 17.77% < .001 || Tornado 49.33% 63.43% 14.10% <.001
Average 52.80% 67.59% 14.79% Average 44.62% 58.04% 13.42%

Table 5: Accuracy of suggestion for other languages.

Lang. N-gram Cache LM  Improv.
C 48.44% 62.14% 13.70%
PHP 56.98% 68.71% 11.73%
Javascript  49.28% 61.72% 12.44%

Table 6: Speed and Memory Comparison. “us'" denotes mi-
crosecond (10~° second).

Speed (us/token) Memory (Mb)
Lang. N-gram Cache LM | N-gram Cache LM
Java 6.8 234 15.4 16.6
Python 6.9 21.2 12.6 13.8

Cache Model Portability. In this experiment, we compared our
cache model with the lexical n-gram model in two data sets of Java
and Python. Table 4 lists the comparison results. For Java projects,
the cache model achieves an averaged improvement of 14.79%
in MRR from 52.80% to 67.59% over the lexical n-gram model.
For Python projects, the improvement is 14.01% from 40.26% to
54.27%. All absolute improvements are statistically significant
at p < 0.001 using sign-test [14]. Table 5 shows the result on
three other languages: C, PHP, and Javascript. As seen, our cache
model significantly (p < 0.001) outperforms the n-gram approach
consistently, indicating that the improvement of our cache model is
language-independent.

Cache Model: Resource Usage. We measured the computational
resources used by the cache model. See Table 6; the memory usage
increases slightly, and performance is 3X slower than the n-gram
model. We contribute the increase to the additional maintenance of
cache and the real-time calculation of cache probabilities along with
their weights. Note that the probabilities from the n-gram model
are calculated offline and only one inquiry is needed for each token.
In contrast, the cache is dynamically updating during the whole
suggestion procedure, and thus the cache probabilities depend on
the dynamic counts of n-grams and are calculated online. Even so,
the code suggestion based on the cache model is fast enough to be
imperceptible for interactive use in an IDE. It should be emphasized
that the additional memory of the cache only depend on the size of
cache (not shown) while is independent of the training corpus.

Case Study. Here are some interesting cases to show why our
cache model improves the performance. The variable heap is only
found in the file CBZip20utputStream. java in Ant. It occurs 70
times, following 12 different prefixes, of which 11 occur more than
1 time. The n-gram model does not suggest correctly, whereas the
cache model does when the n-grams are found in the cache.

In Lucene, the identifier search works as various roles (e.g.
method, variable) and occurs 3430 times. The top 3 prefixes that
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Table 7: Cross-project code suggestion (Java).

Proj. N-gram Cache LM Improv. Sig.
Ant 47.13% 62.41% 15.28% <.001
Batik 41.83% 65.65% 23.82% < .001
Cassandra  41.54% 63.55% 22.01% <.001
Log4j 46.13% 64.63% 18.50% <.001
Lucene 40.82% 64.72% 23.90% <.001
Maven2 58.48% 70.61% 12.13% < .001
Maven3 53.08% 68.15% 15.07% < .001
Xalan 41.28% 61.98% 20.70% < .001
Xerces 45.32% 68.29% 22.97% < .001
Average 46.18% 65.55% 19.37%
it follows are “lucene ." (1611), “searcher ." (414), “solr

." (366). Given a specific file FrenchStemmer. java, it occurs
35 times and works as a variable (String[] search). The top3
prefixes are “[ 1" (8), “i <" (5), “endswith (" (5). The cache
model recommends correctly when the n-grams occur again, while
the n-gram model does not.

5.2.2  Cross-Project Code Suggestion

We performed another experiment to simulate a new, “greenfield"
project setting, where training data can only be obtained from other
projects. Most data-driven approaches, including language models,
are subject to the well-known problem of lack of portability to new
domains/projects. Usually there is a substantial drop in performance
when testing on data from a project different from the training
data. Our data suggests that the cache model can alleviate the cross-
project problem. Table 7 shows the results of cross-project code
suggestion. For each project we performed 10-fold cross-validation
as in the previous experiment. The difference is that we used the
other eight Java projects rather than the other nine folds for training.
As seen, the lexical n-gram model has a accuracy of 46.18%, which
is 6.62% lower than that of the in-project setting reported in Table 4,
which empirically reconfirms the cross-project problem of language
models. Comparing the accuracies in Tables 4 and 7, we can see that
the gap between the cross-project and in-project settings decreases
from 6.62% (46.18% versus 52.80%) to 2.04% (65.55% versus
67.59%). We attribute this to that the cache component, built on a
few n-grams in a quite local context, makes up for the loss of the
project-specific code regularities to some extent. This also indicates
that programming language is quite localized, since project-specific
code patterns are grouped locally.

5.2.3 Code Suggestion in Software Maintenance

In this experiment, we emulate code suggestion in software main-
tenance, where we change existing files rather than writing new
files. When predicting a token, we build the cache on the rest tokens



Table 8: Maintaining code suggestion (Java). The cache is built
only on the current file rather than the previous 5K tokens.

Proj. N-gram Cache LM™ Improv.  Sig.
Ant 53.78% 67.07% 13.29% < .001
Batik 50.56% 70.05% 19.49% < .001
Cassandra  53.06% 69.10% 16.04% <.001
Log4j 51.74% 68.31% 16.57% < .001
Lucene 51.88% 70.28% 18.40% <.001
Maven2 53.96% 70.06% 16.10% <.001
Maven3 56.79% 70.81% 14.02% < .001
Xalan 50.86% 65.98% 15.12% <.001
Xerces 52.61% 72.24% 19.63% < .001
Average 52.80% 69.32% 16.52%

Table 9: Descriptions of token abstractions.
Abstraction | Description  Examples
ID_MCALL | method calls getMessage(), call()
ID_TYPE types QueryNode, ScoreMode
ID_VAR variables 1, size, node
LIT literals "String", ’a’, 270
KW keywords int, for, while
OP operators > <+, =, -
SEP separators LLG)LLD

in the current file. It is different from previous settings at that we
incorporate both prolog and epilog contexts here rather than only
exploiting the prolog context in the above experiments. Comparing
Tables 4 and 8, we found that our cache model is even more useful
for software maintenance, by achieving significant improvement
in suggestion accuracies (69.32% versus 67.59%) with less tokens
(0.9K versus 5K). This result reconfirms our hypothesis that source
code is localized at the file level.

5.3 Why Does the Cache Model Help?

In this section, we investigated the reasons why the cache model
works. We first checked which tokens benefit most from our cache
model, then investigated whether our cache model is indeed captur-
ing the localized regularities of both endemic n-gram patterns and
frequency-biased patterns of non-endemic n-grams.

5.3.1 Token Abstraction Analysis

In this experiment we investigated which tokens benefit most
from our cache model. We divided the tokens into 7 classes of
token abstractions: method calls (ID_MCALL), type identifiers
(ID_TYPE), variables (ID_VAR), literals (LIT), keywords (KW),
operators (OP), and separators (SEP). The first four classes belong to
open-vocabulary (unlimited number of vocabulary) while the latter
three classes are close-vocabulary (limited number of vocabulary).
Table 10 lists the results for different token abstractions.

As one would expect, the identifiers have a low suggestion accu-
racy (ranging from 19.83% to 28.25%), compared with the overall
accuracy of 52.80%. A recent study of code cross-entropy [4] shows
that identifiers contribute most to the uncertainty of the source code.
Our results reconfirm these findings. We have found that the use
of local caches drastically improves the suggestion accuracy of
identifiers (+21.91% to +27.38%).

In contrast, the programming-specific abstractions (i.e., keywords,
operators, and separators), have relatively higher accuracy. For
example, the separators, which take a large proportion of the total
tokens, have a suggestion accuracy of 75.20%. Consequently, their
improvements from the cache model are relatively small (8.41% to
13.10%). This is because the regularities of these abstractions are
more specific to the programming language syntax, which can be
captured by the lexical n-gram models from the training data.
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Table 11: Improvements from different patterns captured by
the cache component. “Endemic' and “NonEndemic' denote
the endemic n-gram patterns and the frequency-biased pat-
terns of non-endemic n-grams, respectively.

Java Python
Abstraction Endemic NonEndemic Endemic NonEndemic
ID_MCALL | +21.81%  +5.57% +12.92%  +0.92%
ID_TYPE +16.74%  +5.61% +13.67%  +2.81%
ID_VAR +17.73%  +4.18% +1633%  +2.89%
LIT +15.24%  +2.95% +11.43%  +1.78%
KW +5.06% +5.61% +6.15% +4.35%
(0] +4.73% +8.37% +6.05% +5.24%
SEP +3.26% +5.15% +5.39% +4.91%
ALL +9.30% +5.42% +9.57% +3.85%
Case Study. In Lucene, the most frequent method length de-

notes the function of gerting the length of a object, and therefore it
usually follows “ID_VAR .". The method obtains improvements of
30.33%, 39.72%, and 5.28% in MRR, Top1, and Top10 accuracies
respectively, indicating that most of the improvement is contributed
by reranking the candidates.

The keyword (KW) new occurs 25459 times in Lucene, and
achieves an improvement of 7.59% in MRR by using the cache
model. 75% of the prefixes that it follows contain at least one
identifier or literal. For example, nearly half of the prefixes are the
instances of the pattern of constructing a new object and assigning
it to a variable. This suggests that the keywords also benefit from
the locality of identifiers and literals.

5.3.2 N-gram Patterns Analysis

In this experiment, we investigated whether our cache model
is indeed capturing the localized regularities of endemic n-gram
patterns and of non-endemic but specific n-grams. We use the terms
“Endemic" and “NonEndemic" to denote the improvements from
the two kinds of patterns above, respectively. We distinguished the
accuracy improvement for a given token as follows. If the correct
suggestion only occurs in the cache component, we attribute the
improvement to the capture of endemic n-gram patterns from the
cache component; otherwise, it is from the capture of non-endemic
but specific n-grams, since the correct suggestion is found in both
n-gram and cache components; however, it is assigned a higher
rank because the cache component correctly captures the more local
usage patterns.

Table 11 lists the improvements (endemic and non-endemic) for
different token abstractions on Java projects. Several observations
can be made. First, the cache component indeed captures both
the endemic n-grams patterns and the non-endemic (but locally
specific) patterns of n-grams. They achieve the absolute accuracy
improvements of +9.30% and +5.42% respectively on Java, and
+9.57% and +3.85 on Python. Second, different abstractions benefit
differently from the two kinds of patterns. For identifiers (ID_*) and
literals (LIT), the coverage of endemic n-grams improves the most.
This jives with intuition, because a large portion of new identifiers
introduced by new functions and files can only be captured by the
cache component. In contrast, the language-specific tokens (KW,
OP, and SEP) benefit similarly from both patterns.

5.4 What Factors Affect the Cache Model?

Next, we investigate several factors’ influence on the cache model.

5.4.1 Cache Context
To investigate the influence of cache context on the cache model,
we build the cache on different kinds of contexts in the current file:
prolog, epilog, and both. It came as a surprise to us that, in general,



Table 10: Improvements for different abstractions.

In-project Cross-project
Abstraction | Percent | N-gram Cache LM Improv. | N-gram Cache LM  Improv.
Java
ID_MCALL 6.20% | 19.83% 4721%  27.38% | 12.91% 45.43% 32.52%
ID_TYPE 7.15% | 23.98% 46.33%  22.35% | 16.84% 44.62% 27.78%
ID_VAR 17.77% | 28.25% 50.16%  2191% | 19.08% 48.47% 29.39%
LIT 7.20% | 26.21% 44.41% 18.20% | 22.45% 42.41% 19.96%
Kw 10.35% | 54.34% 65.00% 10.66% | 51.07% 63.90% 12.83%
()% 14.78% | 68.20% 81.30% 13.10% | 59.67% 78.83% 19.16%
SEP 36.54% | 75.20% 83.61% 841% | 69.44% 81.28% 11.84%
ALL 100% | 52.80% 67.59% 14.79% | 46.18% 65.55% 19.37%
Python
ID_MCALL 2.38% | 13.44% 27.28% 13.84% | 6.81% 25.74% 18.93%
ID_TYPE 3.62% | 21.92% 38.40% 16.48% | 8.83% 33.04% 2421%
ID_VAR 25.03% | 22.35% 41.57% 19.22% | 15.18% 39.75% 24.57%
LIT 13.54% | 20.15% 33.36% 13.21% | 10.26% 30.23% 19.97%
Kw 8.15% | 39.15% 49.66% 10.51% | 33.15% 47.09% 13.94%
OP 14.24% | 66.84% 78.14% 11.30% | 60.32% 76.10% 15.78%
SEP 33.03% | 67.41% 77.71% 10.30% | 59.24% 74.89% 15.65%
ALL 100% | 44.63% 58.04% 13.41% | 36.27% 55.62% 19.35%
Table 12: The influence of cache context on the code suggestion o
accuracy. We build the cache on the current file. o
Cache Context 2
Lang. Model | Prolog  Epilog  Both 3 60
cache | 4147% 41.53% 52.98% s ol |
Java +n-gram | 64.96% 65.00% 69.32% 4<0, 52.80
cache | 36.53% 36.50% 47.73% sol— .
01 2 3 4 5 6 7 8 9 10
Python + n-gram | 56.55% 57.17% 62.43% Gache Size (K tokens) Gache Order

Table 13: The influence of cache scope on the code suggestion
accuracy. We build the cache on the previous 5K tokens.

File Order
Lang. Model | Ordinal Reverse Random
cache | 53.42% 53.44% 47.51%
Java +n-gram | 67.59% 67.59%  66.56%
cache | 42.81% 42.81% 42.01%
Python +n-gram | 57.23% 57.22%  56.86%

there is no difference between the prolog and epilog, as shown in
Table 12. We had naively assumed that the cache built on prolog
would reflect the “burstiness” of the n-grams, and hence outperforms
that on epilog. It turned out to be wrong. The results suggest that
code locality holds its trend in the file. Intuitively, the cache model
benefits from more context, reaffirming our finding that the cache
model is especially useful for code suggestion.

5.4.2 Cache Scope

It should be emphasized that the cache component is built on the
previous 5K tokens, which may across different files. Therefore,
the performance of our model can be influenced by the order of
files. Table 13 lists the suggestion results with different file orders:
“Ordinal" (the default setting in above experiments) and “Reverse"
denote that all localized files in the same subdirectory are grouped
together and are sorted in ascending and descending order respec-
tively, while “Random" denotes that all files are in randomized order
and the localized files are not grouped together. First, using only the
cache component built on the localized files, either from ordinal or
reverse order, outperforms that on the random files consistently for
both languages, indicating that the localness of code is also reflected
at the localized structure of codebase. The improvement for Python
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Figure 4: The influence of cache size and order on the sugges-
tion accuracy (Java). The trend for Python is similar to Java.

is not so obvious as Java. One possible reasons is that in Python
projects a file consists of multiple related classes. Second, working
together with n-gram component (i.e. + n-gram), we achieve similar
performances for different settings. We conjecture that all settings
exploit the previous tokens in the current file, which captures most
of the localized regularities. This suggests that our cache model is
robust by taking advantages of both n-gram and cache components.

5.4.3 Cache Size and Order

The cache size and order have similar trends of the variation of
MRR scores with the increase of the value, as plotted in Figure 4.
The MRR score increased rapidly with cache size, saturating around
2K tokens. It is worth mentioning that we have already achieved
an absolute improvement of 12.1% when the cache size K = 500,
which confirms our hypothesis that the local knowledge of source
code is assembled through a specific contextual piece. When we
employed an unlimited cache (we stored in the cache all the previous
tokens in the test data), the suggestion accuracy is 68.86%, which
is only 1.27% higher than when K = 5000. This suggests that
localized regularities cannot be captured beyond the specific context.

Similarly, the accuracy went up sharply when the order m in-
creased from 3 to 6, while was improved slowly when the order
continue increased. One possible reason is that prefixes of 5 tokens
are precise enough for the suggestion task and longer n-grams (e.g.
10-grams) that are locally repetitive are usually extended from these
shorter n-grams (e.g. 6-grams).

Threats to Validity and Limitations. The most likely threat to the
validity of our results is the corpus we used. Although we chose



many projects with large numbers of LOCs, we cannot say for
sure how representative our corpus is in practice. Nevertheless, the
commonality we have seen across different programming languages
gives us confidence that our results hold generally.

The threat to internal validity includes the influence of the settings
for the cache model (e.g. ~ and cache scope). For instance, the
cache model would be affected by the different orders of the the
localized files under the same subdirectory (Section 5.4.2). However,
the cache model built on the current file regardless of the localized
files, still achieves over 12% improvement in MRR score, which
is only 2.6% lower than that built on the localized files (Table 3).
For code suggestion in software maintenance where both prolog and
epilog contexts are available, the cache model built on the current
file achieves comparable performance with that built on the localized
files (Section 5.2.3).

6. RELATED WORK

Applying NLP to Software Engineering. As more repositories
of open source software have become publicly available (e.g. on
GitHub and BitBucket), software engineering researchers have
turned to empirical methods to study the process of developing
and maintaining software [11,27,38,40,42-45,47,49]. Statistical
language modeling has also emerged as an approach to exploit this
abundance of data [5,21,32,33]. Gabel and Su [16] reported on
the non-uniqueness of even large code fragments; Hindle et al. [18]
showed that n-gram models could capture the predictable properties
of source code and thus support code suggestion. Along the same di-
rection, to alleviate the data sparseness problem that n-gram models
face, Allamanis and Sutton [4] learned language models over more
data from different domains, while Nguyen et al. [36] exploited a
more general unit—semantic tokens.

Our approach is complementary to theirs: it captures different
regularities of source code, that is, the localness of software. The
simplicity of our cache model makes it broadly applicable, and easy
to incorporate into other approaches: just use an interpolation of
the cache model estimated probability with that from an existing
model. Notably, Allamanis and Sutton [4] showed that the identifiers
contribute most to the uncertainty of source code, even on a giga-
token corpus. Our approach works especially well for the identifiers.

Analysis of Identifiers. Identifiers take up the majority of source
code tokens [9], hence play an important role in software engineer-
ing in both code cognition [31] and understanding [28]. It has been
shown that identifiers are most difficult to predict [4]. Our results
confirm this finding: the n-gram approach only achieved suggestion
accuracies of 22.11% to 26.05% on identifiers, which is half of other
types (it is even worse in cross-project code suggestion). With the
help of the cache component, it greatly improves the suggestion
accuracies of identifiers.

There has been a line of research on predicting the identifiers
based on the contextual information [10, 19, 25, 34, 39, 48]. For
instance, Holmes et al. [19] and Kersten and Murphy [25] incorpo-
rated contextual information to produce better recommendations of
relevant API examples. Bruch et al. [10] and Robbes and Lanza [39]
concerned predicting the most likely method calls from prior knowl-
edge in similar scenarios. Nguyen et al. [34] used graph algorithms
to predict API which is similar to the current code. Our approach
is generally complementary: the prediction can be improved using
local statistics of corpus.

Local regularities have been exploited in the past to help splitting
source code identifiers [1,13,15,17,30]. They focused on splitting
compound identifiers based on the observation that terms composing
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identifiers usually appear in a local context (e.g. method or file).

Cache LM in NC Community. Tt is worthy emphasizing that our
cache language model is different from that is used in N£ com-
munity. As noted in Section 3.1, natural language is not as locally
repetitive as programming languages at the levels of n-grams. There-
fore, the cache component in NLP is usually a unigram model and
working with class language models [29]. A typical class language
model [8] first predicts the classes of the words (e.g. grammatical
part-of-speech), then transforms the classes to the words on the
basis of their frequency within the classes. Nguyen et al. [36] im-
plemented a similar cache LM as in NLP, where semantic tokens
worked as word classes and the cache for variables stored all the
variables that belong to the same or containing scope in the search
path for each semantic token.

While their work does not explicitly use a cache language model
to capture the general “localness" of software over a large corpus,
the differences lie in: (1) we directly build the cache model at the
granularity of n-grams for programming languages; (2) we cache
the n-grams of all types of tokens, not only variables; and (3) we
don’t require any additional information (e.g. type information, code
path) which is difficult and expensive to produce. Our work is based
on the observation that programming languages are far more regular
than natural language [18] and code fragments of surprisingly large
size tend to reoccur [16]. The main advantage of our cache lan-
guage model is that the cache component exploits more contextual
information and makes more precise suggestions. Therefore, the
probabilities of the cache component is directly interpolated with
those from the n-gram component. Our additional caching compo-
nent achieves better improvement in top1 accuracy than that used
in Nguyen’s work [36] on the same data: +9.4% versus +0.7%. We
contribute the improvement to the broader coverage of tokens and
more expressive prefixes exploited in the cache component.

7. CONCLUSION

The cache language model introduced here captures the localness
of software. It augments n-gram models with a cache component
to capture the endemic and specific n-gram patterns in the locality.
Experimental results show that the cache language model captures
the localized regularities in the source code. Consequently, the sug-
gestion engine based on the cache model improves the suggestion
accuracy over the n-gram approach, especially in the cross-project
setting and during software maintenance. It should be emphasized
that our cache language model is quite simple and requires no ad-
ditional information other than the tokens, thus is applicable to all
programming languages. Furthermore, our approach is comple-
mentary to most state-of-the-art works since they capture different
regularities of the source code.

Besides the simple n-gram models, our method is also applica-
ble to other paradigms such as the semantic language model [36].
Another interesting direction is to further explore the potential of
the cache, such as building the cache on more semantic scopes (e.g.
import the same header files or packages, or files that are changed
together with the current files), or introducing a decaying factor to
account for recency (i.e. n-gram distance) in the cache.
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